

Turning polymers into possibilities.

Recycling of Biodegradable Polymer: Zeus' New Technology

John Campanelli and Elizabeth Foley

Objective and Overview

The objective of this training is to make you aware of Zeus' recycling technology and provide a protocol for handing inquiries.

Overview

- Background on end of life management for products
- What is Poly(Lactide)?
- Recycling Poly(Lactide)
- Zeus' Recycling Technology
 - What is the technology?
 - What are we offering?
 - Who might be interested?
 - What to do with an inquiry?

The Life Cycle of Products

https://19january2017snapshot.epa.gov/climatechange/climate-change-and-life-cycle-stuff_.html

Recycling Plastics

Mechanical Recycling

 This is the most common method of recycling where plastics are separated by type, shredded or granulated, melted and blended, then shaped into something new.

http://www.maine.gov/dep/waste/recycle/whatrecyclablesbecome.html#1plastic

ZEUS PERFORMANCE EXTRUSIONS

Recycling Plastics

Chemical Recycling

 This method breaks down the polymer chains of the plastics into monomers or other small molecule chemicals.

Biodegradable Polymers

 Biodegradable polymers contain polymer chains that are hydrolytically or enzymatically cleaved, resulting in soluble degradation products.

Polylactide

 Polylactide, also known as polylactic acid or PLA, is a biodegradable polyester derived from renewable plant resources

ZEUS PERFORMANCE EXTRUSIONS

Applications of PLA

Zeus Confidential—Internal Use Only

DOI: 10.18642/jmseat 7100121546

End of Life Options for PLA

	PROS	CONS
Chemical Recycling	 Recovers valuable raw materials Provides a closed loop system for PLA with no loss in performance properties 	 High Temperature, High Pressure systems required Difficult to separate from other polyesters
Mechanical Recycling	 Converts material into new products Familiar process (ease of adoption) 	 Loss of Performance Properties PLA contaminates other plastics being mechanically recycled
Incineration	Recovers energy	Low value recovered
Composting	Provide nutrients to plants	Composting facilities are limitedLow value recovered
Landfill	 Breaks down into benign components 	Sub-optimal conditions lead to slow degradationNo value recovered

Zeus' Technology & Benefits

- A chemical recycling technology that produces methyl lactate or lactic acid from PLA.
 - Works on a wide range of PLAs including high mw medical grade PLLA and commercial grade PLLA for food packaging
 - Can potentially be expanded to other materials, but that would be considered on a case by case basis
- Several significant advantages over existing technologies are:
 - High Efficiency (High % Recovery)
 - Low-Temperature, Low Pressure Processing
 - Economic Advantage
 - Less energy required compared to known chemical recycling
 - Recoverable processing aids
 - Separates PLA from a mixed waste stream (such as PET)
 Zeus Confidential—Internal Use Only

What are we offering and who might be interested?

- We offer this technology through a license agreement.
 - Patent Pending (US20180051156A1)
 - Zeus website will be updated with a microsite dedicated to this topic
 - White paper available
 - Technical paper being presenting at ANTEC May 8, 2018

Who might be interested?

- Polylactide or Lactide or Lactic Acid Manufacturers
- Packaging companies adopting technologies to meet the Circular Economy Initiatives
- Environmental or Green Technology Groups
- Recycling Companies
- Medical PLA converters looking to extract value from expensive scrap

What to do with an inquiry?

- Obtain the following information from the inquirer and send it to Bruce Anneaux and Jennifer McQuesten
 - First & Last Name
 - Company Name
 - Telephone
 - Email
 - How did you hear about this technology?
- Respond to the inquirer and include the following points:
 - Thank the inquirer for his or her interest
 - Let him or her know that his or her inquiry has been passed on internally
 - Bruce will follow up within 5 business days
 - Encourage the inquirer to check out Zeus' white paper available on the website, if he or she has not already seen it

Celebrating

1966-2016